Yearly Archives: 2017

4 posts

New publication

The research paper “An improved cut-and-solve algorithm for the single-source capacitated facility location problem” have been published in EURO Journal on Computational Optimization. Abstract: In this paper, we present an improved cut-and-solve algorithm for the single-source capacitated facility location problem. The algorithm consists of three phases. The first phase strengthens the integer program by a cutting plane algorithm to obtain a tight lower bound. The second phase uses a two-level local branching heuristic to find an upper bound, and if optimality has not yet been established, the third phase uses the cut-and-solve framework to close the optimality gap. Extensive computational results are reported, showing that the proposed algorithm runs 10–80 times faster on average compared to state-of-the-art problem-specific algorithms.

Multi-Objective Optimization Repository (MOrepo)

The past weeks we have created Multi-Objective Optimization Repository (MOrepo) which is a response to the needs of researchers from the MCDM society to access multi-objective (MO) optimization instances. The repository contains instances, results, generators etc. for different MO problems and is continuously updated. The repository can be used as a test set for testing new algorithms, validating existing results and for reproducibility. All researchers within MO optimization are welcome to contribute. For more information see https://github.com/MCDMSociety/MOrepo.

Using LocalSolver to solve VRP problems

The last days I have been playing a bit with LocalSolver and tried to model various vehicle routing problems (VRP). LocalSolver is a heuristic solver based on a heuristic search approach combining different optimization techniques. It includes a math modeling language (LSP) and there is a package so that it can be used from R. You need to download and install LocalSolver (I used v7.0) and get an academic license from their webpage.

Plotting IP and MO-IP models in R

I recent released a small package gMOIP which can make 2D plots of linear and integer programming models (LP/IP). With the package you can make plots of the feasible region (or solution space) of an LP, visualize the integer points inside the region and the iso profit curve. Moreover, can also make a plot of a bi-objective criterion space and the non-dominated (Pareto) set. Figures are prepared for LaTeX and can automatically be transformed to TikZ using tikzDevice.